MICHIGAN

UNIVERSITY OF MICHIGAN, ANN ARBOR

Hierarchical Assemblies of Inorganic Nanoparticles (NPs)

Nicholas A. Kotov

London dispersion attraction $V_{LDF} = A_{121}/12 \cdot \pi \cdot d^2$

A ₁₂₁

Metals and semiconductors10 - 40 • 10-20 JOrganic molecules1 - 10 • 10-20 J

Electrostatic Repulsion: $V_{EL} = \frac{64 \cdot kT \cdot \sigma_o}{\epsilon_o \epsilon} \exp(-\kappa_D d)$

σ

Metals and semiconductors1 — 60 mC/m²Organic materials, insulators26 — 100 mC/m²

Simplicity

Wide range of experimental conditions and building blocks

Simple Phase Diagram

Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer, N. A. Kotov, Self assembly of virus-like self-limited inorganic supraparticles from nanoparticles, *Nature Nanotechnology*, 2011, 6, 580

Mechanism of Supraparticle Self-Assembly

Supraparticle is formed due to balance of electrostatic repulsion and London dispersion attraction.

Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer, N. A. Kotov, Self assembly of virus-like self-limited inorganic supraparticles from nanoparticles, *Nature Nanotechnology*, 2011, 6, 580

Other Assemblies CdSe, PbS, PbSe

Complex Assemblies with Au NP in the center

Complex Assemblies with Au NanoRods in the center

Colloidal Crystals from Supraparticles

Assembly combining the nanoscale and mesoscale structural motifs

Capsid-Like Biomimetic Nanoshells

Collaborations with Prof. Petr Kral, U. Illinois Chicago Prof. Peijun Zhang, U. Pittsburg

Cryo-TEM Tomography

M. Yang, H. Chan, G. Zhao, J.H. Bahng, P. Zhang, P.Král, N. A. Kotov, Self-Assembly of Nanoparticles into Biomimetic Capsid-Like Nanoshells, *Nature Chemistry*, 2017, 9, 287–294.

Assemblies of Chiral NPs into Nanohelixes

CdTe NP stabilized with D-CYS

CdTe NP stabilized with L-CYS

J. Yeom, B.Yeom, H. Chan, K.W. Smith, S. Dominguez-Medina , J.H.Bahng, G. Zhao, W.-S.Chang, S.J.Chang, A. Chuvilin, D. Melnikau, A.L. Rogach, P. Zhang, S.Link, P.Král, N. A. Kotov, *Nature Materials*, 2015, 14, 66–72

Does self-assembly of complex systems require monodispersity?

Energy landscape of self-assembly

Polydispersed Building Blocks Au-S nanosheets

Self-Assembled Chiral Hedgehog Particles

Au-DL-Cys SPs

Chiroptically Active Hedgehog Particles

Self-Assembled Hedgehog Particles

J. H. Bang, B. Yeom, Y. Wang, S. O. Tung, N.A. Kotov, Anomalous Dispersions of Hedgehog Particles, *Nαture*, 2015, 517, 596

Self-Assembled Hedgehog Particles

Au-S 2D Material

Strong Optical Emission

Jiang, W.; Qu, Z.; Kumar, P.; Vecchio, D.; Wang, Y.; Ma, Y.; Bahng, J. H.; Bernardino, K.; Gomes, W. R.; Colombari, F. M.; *et al.* Emergence of Complexity in Hierarchically Organized Chiral Particles. Second revision

Unusual pH Stability

Chiroptically Active Hedgehog Particles

Chiroptically Active Hedgehog Particles

Temperature, deg °C

GRAPH - a set of nodes and edges

COMPLEXITY - information content

Measures of Complexity

Multifractal parameters

Connectivity index

Complexity index (CI)

Measures of Complexity

Multifractal parameters

Connectivity index

Complexity index (CI)

M. Randić, D. Plavšić On the Concept of Molecular Complexity Croatica Chemica Acta, 2002, 75 (1) 107

Measures of Complexity

Multifractal parameters

Connectivity index

Complexity index (CI)

M. Randić, D. Plavšić On the Concept of Molecular Complexity Croatica Chemica Acta, 2002, 75 (1) 107

Nanoassemblies

Tang, Z.; Kotov, N. A.; Giersig, M.; Science, 2002, 297, 237.

Kotov, N.A.; Dékány, I.; Fendler, J.H. *Adv. Mater.* 1996, *8*, 637.

Cho, K.-S.; Talapin, D. V.; Gaschler, W. L.; Murray, C. B., *J. Am. Chem. Soc.*, 2005, 127, 7140

Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer, N. A. Kotov, *Nature Nanotech*, 2011, 6, 580

S. Blank, et al.. *J. Microsc.* 2003, 212, 280.

W. H. Evers, B.Goris, S. Bals, M.Casavola, J.de Graaf, R.van Roij, M. Dijkstra, D. Vanmaekelbergh, *Nano Lett.* 2013, *13*, *2317*

Graph Theory (GT) of Nanoassemblies

NODES – represent zero-dimensional nanoscale building blocks

Generalized nanoparticle

EDGE - represents organic-inorganic interface

A generalized layer of organic ligands

Connectivity Between Complex Blocks

EDGE - represents organic-inorganic interface

Jiang, W.; Qu, Z.; Kumar, P.; Vecchio, D.; Wang, Y.; Ma, Y.; Bahng, J. H.; Bernardino, K.; Gomes, W. R.; Colombari, F. M.; *et al.* Emergence of Complexity in Hierarchically Organized Chiral Particles.. Second revision

Calculations of Complexity Index

Number of edges for a node = *N*

 $CI = N + \Sigma N$ (nearest neighbors)/2 + ΣN (next neighbors)/4 + ...

Jiang, W.; Qu, Z.; Kumar, P.; Vecchio, D.; Wang, Y.; Ma, Y.; Bahng, J. H.; Bernardino, K.; Gomes, W. R.; Colombari, F. M.; *et al.* Emergence of Complexity in Hierarchically Organized Chiral Particles.. Second revision

Calculations of Complexity Index

 $CI = 2 + [4/2] + [4/4] + [4/8] + ... = 2 + Lim(\Sigma 4/2^{n}) = 6$

Graph Theory Models

Graph Theory Models

Thank You!

NIH NSF DARPA ONR AFOSR ARO DOE DTRA

Dow Chemicals Boeing Dow Chemicals 3D Biomatrix

IMRA Nico Technologies BASF Hyundai

and other contributors for generous support